If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3a^2+4a+2=0
a = -3; b = 4; c = +2;
Δ = b2-4ac
Δ = 42-4·(-3)·2
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{10}}{2*-3}=\frac{-4-2\sqrt{10}}{-6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{10}}{2*-3}=\frac{-4+2\sqrt{10}}{-6} $
| -4x+12=-x-18 | | 2y^2+6y+1=0 | | 7x-15=6x-6 | | 7x+19=4x+28 | | -2(-5-4)+x+1=119 | | 5=8i-(9i-9) | | -5x-3=-x-19 | | -n+8=2n+20 | | 4x+8=-x+13 | | 5=8i(9i-9) | | 3x+22=-2x+37 | | 5(n-1)=2n-4 | | 4x^2+28=32x | | 4(-4x+1)-2x+4=-162 | | 4x^2+28=32 | | -2x+19=31 | | 10x+21=3x+7 | | 10x-7x=x+8 | | 2x+4=-3x+54 | | -7x-1=-3x+27 | | 5k^2+6k-16=0 | | 6x2+7x-90=0 | | -2x-10=-3x-6 | | 2(x+5)=(x+40) | | 21-x=6+2x | | 8x-9=6x-11 | | -6x+14=-4x+12 | | -9x+20=-5x+32 | | 5x2-x+1=0 | | 6n+6=3(n+5) | | -5x-8=-4x-9 | | 4/7=16/x |